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Newton’s method is applied to finite-difference approximations for the steady-state com-
pressible Navier-Stokes equations in two spatial dimensions. The finite-difference equations
are written in generalized curvilinear coordinates and strong conservation-law form and a
turbulence model is included. We compute the flow field about a lifting airfoil for subsonic
and transonic conditions. We investigate both the requirements for an initial guess to insure
convergence and the computational efficiency of freezing the Jacobian matrices (approximate
Newton method). We consider the necessity for auxiliary methods to evaluate the temporal
stability of the steady-state solutions. We demonstrate the ability of Newton’s method in
conjunction with a continuation method to find nonunique solutions of the finite-difference
equations, i.e., three different solutions for the same flow conditions. 0 1991 Academic Press, Inc.

1. INTRODUCTION

In this paper we discuss the development and application of a computer program
designed to find steady-state solutions of the compressible two-dimensional
thin-layer Navier-Stokes equations. The solution strategy is quite straightforward.
We use finite differences to approximate the governing partial differential equations
and apply Newton’s method to find a solution of the resulting nonlinear algebraic
equations.

Although Newton’s method is frequently used to solve small systems of nonlinear
algebraic equations, it is less often used for the large systems of nonlinear equations
generated by the discretization of the partial differential equations for fluid
dynamics. Gustafsson and Wahlund [1] used Newton’s method for steady com-
pressible inviscid flows about blunt bodies traveling at supersonic speeds.
Fornberg [2] solved for the steady incompressible viscous flow about cylinders for
Reynolds numbers up to 600. Jackson [3] investigated the onset of transition from
steady to periodic flow (Hopf bifurcation) by solving an extended set of steady
incompressible viscous equations.

Before we proceed to the details of the code development, we digress briefly to
consider the utility of such a program and thus the motivation for its development.
Many of the methods used to find steady-state solutions to the Navier-Stokes equa-
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NEWTON’S METHOD 109

tions are approximations to Newton’s method. That is, they would be identical to
Newton's method except that approximations are made in the Jacobian matrix.
Most methods make more than one approximation in order to decreasec numerical
operations and memory requirements for an iteration step. For example, an alter-
nating direction implicit (ADI) method may use an approximate factorization of
the Jacobian matrix to reduce numerical operations as well as memory storage
requirements. In addition, it is quite common to make approximations for elements
of the Jacobian corresponding to algebraicaily complicated terms or terms tha:
increase the bandwidth of the factored Jacobian matrix, e.g., terms that arise from
the turbulence model. Each iteration of the approximate method is less expensive
than a corresponding iteration of the exact Newton method. However. cach
approximation affects the convergence rate of the approximatz method and, if more
than one approximation is made, it is difficult to isolate the adverse effect of a singie
approximation. If one begins with the exact Newton's method, the effect of each
approximation on convergence can be evaluated independently.

Although our original intent was to use the program as a convergence evaluation
tool, the prospect of using Newton's method to solve applied flow problems should
not be overicoked, and we consider this potential in the following sections. The
memory of current supercomputers {over two hundred million words) makes two-
dimensional calculations feasible without auxiliary storage devices and, if residual
reduction to machine accuracy is a primary concern, the computation time may be
comparable with current “approximate” methods. In addition, Newton's methed
provides a tool for investigating the application of nontime-accurate (ie., direci:
solvers to the compressible steady-state Navier-Stokes eguations.

2. ALGORITHM

Our interest in the use of an exact Newton’s method evoived from an investiga-
tion into the causes of the rather slow residual reduction for current approximate
methods after the residual has been reduced by approximately three decades. In
that investigation, we chose an ADI scheme and removed all approximations in the
Jacobian matrix except those associated with the approximate factorization and the
turbulence model. Since the convergence rates were still less than desirable, we
decided to use Newton’s method, i.e., an exact Jacobian, and Gaussian elimination
to solve the linear system at each iteration. The exact solver would allow us o
ensure that we had not overlooked any unknown approximations {(mistakes) by
checking the convergence rate which should, of course, be quadratic. It would aiso
allow us to evaluate independently the effects of the approximate factorization, the
turbulence model Jacobian approximations, or any other approximation deemed
desirable.

A finite-difference approximation for the steady-state two-dimensional
Navier-Stokes equations can be written symbolically as

F(q)=0
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110 BAILEY AND BEAM

where the components of the vector F are the finite-difference approximations to
the derivatives of the flux terms at each grid point. The components of the vector
F are functions of the four conservative flow variables (density, momenta in two
directions, and energy). If the dimension of the grid is J in the ¢ coordinate and K
in the » coordinate, the dimension of the vector F is 4JK. For our calculations
Eq. (2.1) is a finite-difference approximation of the thin-layer Navier-Stokes equa-
tions written in generalized curvilinear coordinates and strong conservation-law
form [4].
The nth step of Newton’s method [ 5] for solving the nonlinear system (2.1) is

aF "A n_dnA n__ Fn (')2
2 Q"=A"4q" = ; 2.2)

where

Aq"=q"+1—q". (23)

One solves (2.2) for Aq" and obtains ¢" ** from
q"ti=q"+ 4q".
The matrix .« is the 4/K x 4JK Jacobian matrix
o =0F/dq. (2.4)

One of the difficulties encountered with Newton’s method is the possible
singularity of the Jacobian matrix, e.g., as some parameter is varied. This problem
has been addressed by continuation methods, e.g., Keller[6]. We will return to the
implementation of continuation methods in Section 6.

In the discussion of numerical experiments we will refer to results obtained from
a time-accurate approximation to the unsteady Navier-Stokes equations. Since the
time-accurate algorithm is also an approximate Newton method, it is worthwhile to
relate the time-accurate algorithm to (2.2). The nth step of a first-order time-
accurate ADI method for the unsteady equations

dq
e F(q)

can be written [7]
[I—A4t A" 1[I— At B"] Aq"= A4t F", (2.5)

where A and B are approximations to the Jacobian matrices of the spatially dif-
ferenced flux vectors in the ¢ and s coordinates, respectively. The matrices 4 and
B have the same dimension as .o/. However, they have a simple structure when
compared to /. For example, with appropriate ordering of the unknown variables,
they are block diagonal matrices with blocks of dimension 4Jx4J in one ADI
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sweep and 4K x 4K in the other ADI sweep. I three-point difference approxima-
tions are used to approximate spatial differences. sach 4/ x 4J, or 4K x 4K, mairix
is a block tridiagonal matrix with sub-blocks of dimension 4 x4. i a five-point
fourth-order numerical smoothing is included, the matrices are block penia-
diagonal. This special structure of the matrices 4 and B makes the ADI algorithm
attractive from the viewpoint of numerical operation count and computer memory
requirements. Since the ADI algorithm is implicit it can have good stability proper-
ties. For nontime-accurate calculations, the time parameter 4t can be viewed as a
relaxation parameter. If the approximate factorization were removed from {2.5% iz,
if we solved

vl

N

[I—At(A"+ B")] Aq" = 3¢ F". |

v
13

and if we selected a large value for the parameter 47 {Ar — = ) the algorithm would
be the same as Newton's method (2.2) (if the Jacobians A and B were exact). The
approximate factorization degrades the convergence when compared to Newtoa’s
method. The optimum (for convergence) value of the parameter A: for the
approximate factorization method lies somewhere between zero and infinity and is
generally not known a priori.

3. SAMPLE ProBLEM

Since one of our difficulties in implementing {2.2% for the thin-laver
Navier-Stokes eguations was due to the size of the matrix «, it is worthwhile to
consider the dimensions of a “typical” two-dimensiona! flow calculation. We choose
a “C” grid (see Figs. la and 1b) which wraps arcund an NACAQD012 airfoil. Aft of
the trailing edge, the grid points of the coordinate line =0 (4 = 1} are coincident
which provides for the necessary continuity of the flow field. We choose 167 mesh
intervals (J= 167} in the ¢ coordinate which wraps arcund the airfoil and 58 mesh
intervals (X = 58) in the  coordinate normal to the airfoil surface. The grid spacing
in the coordinate normal to the airfoil is 107° chords at the body and increases
exponentially away from the body. We used the Baldwin-Lomax algebraic tur-
bulence model [87. The number of unknown variables is 38,744 {4JK}. The matrix
s¥ has approximately 1.5 billion elements, most of which fortunately are zero, Th
size of matrix ./ implores us to exploit its sparsity and/or its banded structure. We
have choszn to exploit the banded structure. In the carly stages of our investigation
we tried sparse solvers but the increase in computer time offset any decrease in
storage requirements. However, with the recent improvement of the vectorization
for gather-scatter operations this conclusion may no longer be valid [97. The
bandwidth W of o/ with reordering to include the wake continuity {see Section 4)
s 1856 (32K) and the number of elements {including zeros) within the bandwidth
is approximately 72 million (128JK?). For our initial calculations which utilized
auxiliary storage devices (e.g., disks or solid-state disks), we used two fiies for 2
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FiG. 1. Computational C grid around NACA0012 airfoil: (a) complete grid; (b) enlargement of grid
near airfoil surface.

total of 144 million words. Although the Cray II has 256 million words of memory,
during our program development and testing the maximum machine memory
available was two million words on a Cray XMP or six million words on a
CDC 205. Therefore, a code utilizing auxiliary storage was developed to deal with
the “limited” machine memory. The number of numerical operations to solve a
banded system by Gaussian elimination is approximately NW?/4, where N is the
dimension of &/ and W is the bandwidth or, for our sample problem, 3 x 10%°
operations. At a computation speed of 100 million floating point operations per
second (100 megaflops) each solution would require approximately 6 CPU minutes
for the LU factorization plus the overhead for constructing the Jacobian matrix. It
is worthwhile to note that a “second” solution with the same Jacobian matrix (i.e.,
no update of the Jacobian and with the LU factors stored) would cost about
6 CPU seconds.

4. ALGORITHM IMPLEMENTATION

As we mentioned in the Introduction, the implementation is tedious but
straightforward so only a few remarks are necessary. Many of our difficulties arose
from the size of the problem (i.c., the data management in and out of auxiliary
memory) and the evaluation of the Jacobian elements associated with the tur-
bulence model. For the sample problem, the data-management problems disappear
if sufficient memory is available (e.g., 256 million words on Cray II), however it
seems that there is always a desire to solve a larger problem (ie., a problem that
exceeds currently available memory). Most of the remaining difficulties were



[,
puars
[¥8)

NEWTON'S METHOD

associated with the Jacobian matrix elements corresponding to the boundary condi-
tions. The convergence rate is very sensitive to errors in the Jacobian clements and
drops from quadratic to linear for seemingly insignificant errors. The known
theoretical quadratic converge rate (for most applications} of Newton’s method
provides a good test for correct code.

Jacobian Evaluation

For purposes of discussion we separate the Jacobian elements into three groups:
the inviscid terms, the numerical dissipation terms, and the viscous terms. The first
two groups are easily evaluated from analytical expressions and placed in the
matrix /. The third group, the viscous terms, present more difficulty because of the
algebraic complexity of the turbulence model. We have chosen to evaluate the
Jacobian elements corresponding to the viscous terms numerically. Initiaillv a
problem was encountered in the region of transition between the “inner” turbulent
viscosity and the “outer” turbulent viscosity [8]. This difficulty was traced to a
discontinuous first derivative in the turbulent viscosity as a function of normal
distance from the wall. This was remedied (with the zid of B. Baldwin)} by the
mtroduction of a continuous function. An additional difficulty was encountered in
the calculation of the maximum of the vorticity function in the turbulence model
This latter problem was remedied by the introduction of a spline approximation
to compute the maximum vorticity. In general, the Jacobian elements must be
continuous functions of the unknowns q if quadratic convergence is to be attained.

The turbulence model increases the number of nonzerc elements in the mairix «/.
Although this additional coupling would have a significant effect on an ADI
method (increase in matrix bandwith), for Newton's method it simply increases the
density within the original bandwidth of the unfactored algorithm.

Marrix Reordering

A “"natural” ordering of the vector q in (2.2) for a C grid, e.g.,

qjka k=1,K, j:i"j’

with the k& index varying most rapidly, leads to a banded matrix o/ with bandwith
16K {with fourth-order numerical smoothing) if the grid continuity in the wake were
reglected. With this ordering of the variables, the grid continuity in the wake
{# =0) introduces terms in the upper right and lower left corners of the matrix ..
The matrix is similar to that obtained for an O grid when the periodic boundary
conditions are included. One could develop an algorithm for the LU decompaosition
of a matrix with this special structure. However, we chose to reorder the equaticons
so that the matrix .o/ is banded with bandwidth 32K (i.e., twice the bandwidth of
the original “nonperiodic” matrix). This choice, and the corresponding increase in
cost, was dictated by the implementation of the algorithm using auxiliary storage
devices.
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Banded System Solver

The basic solver is the LINPACK subroutine SGBFA (together with SGBSL for
the back substitution) written by Cleve Moler which uses Gaussian elimination
with pivoting to produce an LU decomposition of a banded matrix. We modified
the code to reduce machine memory requirements, i.e., to reduce the portion of the
matrix in machine memory at any given time. In our initial version we kept one
bandwidth of columns in machine memory and buffered columns injout as we
“swept” through the matrix. We allowed two extra columns for buffering/computing
overlap. After some testing with and without pivoting (which indicated pivoting
was not necessary) we modified the program so that only one-half bandwidth of
columns was kept in machine memory. The disk I/O overhead for the LU decom-
position is minimal but the disk I/O overhead for the backsubstitution (which
requires a minimal amount of CPU time) is substantial. If solid state disks (SSD)
are used, the I/O overhead is negligible. The LU decomposition runs at about 100
megaflops on both the CDC and Cray machines.

Computation Times

The computation times for the sample problem were approximately 600 CPU s
for a full Newton iteration. The time required to construct the Jacobian matrix was
approximately 300 s, most of which was spent in the numerical differentiation to
compute the turbulence model contributions. The LU factorization using the
banded solver required about 300 s. A “second” solution with the same (i.e., frozen)
Jacobian required approximately 6 s. These times were essentially independent of
the computer, ie., the Cray machine or the CDC 205.

5. COMPUTATION RESULTS

We present two types of computational results. First we present some results that
verify the expected convergence rates for Newton’s method. We examine the effect
of initial “guess” or starting solution and investigate the effects of “freezing” the
Jacobian coefficients for two or more iterations.

In the second group of computational results we consider the application of
Newton’s method to “practical” problems. In effect we are seeking an answer to the
question: How does one use a direct solver in practical applications? For example,
we investigate the usefulness of a direct solver for parametric studies, the temporal
stability of converged solutions, and the implication of nonconvergence. By direct
solver we mean any Newton-like method that obtains solutions to systems of non-
linear equations of type (2.1) using a nontime-accurate approach to the steady state.

For the display of the convergence histories, we use the L, norm of the residual

vector F,
1 47K 1,2
F 2= T F2 .
¥tz 2 77)
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Typically, we make a semilog plot of |F|, (normalized by the free-siream residual;
as a function of the iteration step (for Newton’s metnod) or the time step ({or ¢
ADI method). The free-stream residual is evaluated by placing free-stream con
tions at all grid points except those that lic on the rigid body where noslip cong:-
tions are imposed. The initial conditions for the ADI method were chosen to be free

ADI solution after [[F||, had been reduced approximately three decades, ie. af

tor of 1073, The residual can be reduced (from the free stream value) approxis
i4 decades befors we achieve “machine accuracy” {84 bit word).

Tvpical Convergence History

The angle of attack, », was 27, the Mach number, A, was 0.7 and the Reyno:
number, Re, was 0.5x 107. These conditions for the NACAQ012 airfoil lead to =
supercritical flow, i.e., mixed subsonic and supersonic flow. The initial “guess™ was
obtained from an ADI scolution (Fig. 3), where the norm of the residual had been
reduced four decades {10 ~%). After an initial rise in the residual at the firs! ireration
‘Fig. 2}, the convergence is approximately quadratic untif the fourth iteration wnen
roundoff error affects the accuracy of the LU decomposition.

The convergence (or nonconvergence ) of Newton's method depends on the iritia:

1072 -

NORM OF RESIDUAL
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S
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10711 .
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10714 ,
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Fic. 2. I, norm of residual versus Newton's method iteration number, 2.0° angle of attack.
0.70 Mach number, 0.5 x 107 Reynolds number.
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FiG. 3. L, norm of residual versus ADI method iteration number, 2.0° angle of attack, 0.70 Mach
number, 0.5 x 107 Reynolds number.

guess for the vector q. In order to find a measure of the quality of the initial guess
necessary to obtain convergence, we used solutions from the ADI method at several
points in the “time” history. In general, we found it necessary to reduce the free-
stream residual by a factor of 1072 to obtain a starting solution from the ADI
method. In most calculations we used a converged Newton’s method solution
obtained for nearby flow conditions as the initial guess.

Frozen Jacobian Matrix

A popular method of improving the numerical efficiency of obtaining a converged
solution is a modified Newton’s method in which the Jacobian matrix is not
updated at each “iteration” and the “old” LU factorization is saved and reused. The
quadratic convergence is lost but the number of numerical operations is dramati-
cally reduced for each modified iteration since the construction of the Jacobian
matrix and the LU decomposition of the matrix «/ are not necessary for each
substep. The practical difficulty in using this modified method is that one does
not know a priori the optimum time to freeze the Jacobian matrix or how many
iterations to take with the Jacobian matrix frozen.

For the first test case, we choose M =0.7, x=2° and Re=0.5x 107, since this
case (see previous section) exhibited quadratic convergence for Newton’s method.
The initial guess was from the ADI solution. After each full Newton step (Jacobian

——caluatiog and LI factorizaticad-theLLlfastasization-uasstored-andseusedfor 2

fixed number m of modified Newton steps. The number m was selected to be 1
(Newton’s method), 2, 3, 4, and 70. The convergence histories are shown in Fig. 4,
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F1G. 4. Newton’s method with Jacobian matrix frozen for fixed number of steps. L. norm of residual
versus nondimensional CPU time, 2.0° angle of attack, 0.70 Mach number, 0.5 x 107 Reynolds number.

where we plot the norm of the residual as a function of the nondimensional CPU
time. The CPU time is nondimensionalized by the CPU time required for one
Newton iteration. Although the number of iteration steps increased, the CPU time
required for the modified Newton method to converge to machine accuracy was
reduced and for m = 70 was approximately 25% of that for the full Newton methcd.
All cases give the same final solution.

As a second test of the modified Newton method, we chcose the case M == (.83,
a=16° and Re=0.5x10". The initial condition was the converged sclution of
M =085, «=1.5". Since Newton’s method for these conditions required 12 itera-
tions (Fig. 5) rather than the normal five or six iterations, we felt it would provide
a more severe test of the modified method and, in fact, would provide a relatively
poor convergence history. The convergence histories for m =1, 2, 3, 4, 70 are shown
in Fig. 6. Contrary to our expectations, the modified method performed quite well
and the CPU time to obtain a converged solution for m =70 was approximately
10% of that for the full Newton method.

These results offer encouragement that other approximate Newton methods may
also achieve convergence in less than 100 iterations.

Lift Curves at Transonic Mach Numbers

As we mentioned previously, it is well known that Newton’s method requires a
good initial guess to ensure convergence. A practical question is how to avoid
excessive use of an auxiliary method to obtain initial guesses since this can de
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Fic. 5. L, norm of residual versus Newton’s method iteration number, 1.6° angle of attack. 0.85
Mach number, 0.5 x 107 Reynolds number.
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inconvenieni and time consuming. For the nexi set of calculations, we were
interested in obtaining the lift coefficient as a function of angle of attack. We startad
with a partially converged ADI solution at zero angle of attack. With this soiution
as an initial guess we converged the solution with Newton’s method. Next we made
a 0.2° change in angle of attack and, with the zero angle-of-attack solution as the
initial guess, we converged the solution with Newton’s method. Proceeding in thi
manner, using the last previously converged solution as the initial guess, we
continued to increase the angle of attack. The resulting lift curve, M =085 ax
Re=0.5x 10", is shown in Fig. 7. Beyond the angle of attack of 1.75° Newton’s
method fails to converge. A natural question is what is the significance of this iast
converged solution. We consider this question in the following paragraph and again
in Section 6.

w

AN

Temporal Stability of Steady-Stare Solutions

A significant disadvantage of Newton's method {or any other direct solver;j in
computational acrodynamic applications is the fact that, aithough we may obtain
z solution to the steady-state equations, we do not know if the solution is tem-
porally stabie or unstable. The calculation of the previous secticn is a good exampie
to consider. We were able to obtain 2 Newton’s solution up to some maximum
angle of attack, i.e., 1.75%, beyond which Newton’s method failed to converge. What
about solutions beyond this angle of attack? It is well known that for sufficiently
high angle of attack, an airfoil will exhibit “buffeting,” ie.. unsteady osciilations of
the flow field in a limit-cycle type motion although the airfoil itseli is fixed [ 107
In fact, if a time-accurate method is used to calculate the flow ficld for the condi-
tions for which we were unable to obtain a Newton’s method solution, we indeed
find such an unsteady phenomenon. In Fig. 8 we show the lift coefficient time
history computed with a time accurate ADI method. One might jump to the corn-
clusion that there is a direct correlation between the nonconvergence of Newten’s
method and the buffet boundary (the angle of attack at which the flow field is
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FiG. 8. Lift coefficient versus nondimensional time, ADI method, 1.8° angle of attack, 0.85 Mach
number, 0.5 x 107 Reynolds number.

temporally unsteady or linearly unstable). However, this is not the case. In order
to establish the linear stability of each solution obtained from Newton’s method we
calculated the eigenvalue of the matrix o/, Eq. (2.2), with the largest real part. If the
real part of this eigenvalue is positive, then the solution is (linearly) unstable and
we should anticipate buffeting if the solution is calculated with a time-accurate
method. The temporally unstable solutions (as determined by the eigenvalue
analysis) are indicated by open symbols in Fig. 7. The time histories for
a=1.5,1.6,1.75° obtained using the ADI method are shown in Figs. 9a, b, c. The
limit cycle (i.e., bounded oscillatory solution) is a result of the linear instability
coupled with the nonlinear effects.

oW B

LIFT COEFFICIENT

4
3
.2 4
’ W
(c}
0 20 40 80 80 100 120

NONDIMENSIONAL TIME

FiG. 9. Lift coefficient versus nondimensional time, ADI method, 0.85 Mach number, 0.5 x 10’
Reynolds number, for angle of attack equal to (a) 1.50°, (b) 1.60°, and (c) 1.75°.
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We conclude that Newton’s method alone cannot be used to define the buffet
boundary although in this case the angle of attack for which Newton's method faiis
to converge provides a rough estimate. (In Section 6 we apply a2 continuation
method to proceed byond o= 1.75".) This also points out that one should always
be aware that any solution obtained by Newton’s method cowuid be temporaily
unstable and some additional information would be needed to make the stability
determination. An advantage of using Newton’s method in conjuction with the
stability analysis, as opposed to some approximate Newion’s method, iz the
immediate availability of the matrix < and its LU factorization.

Lift Curves ar Low Subsonic Mach Numbers

Approximate Newton methods sometimes have difficulty with convergence for
low subsonic Mach numbers. We choose for a test case M = 0.08 and Re = 0.5 x 105,
Once again, we used a time-accurate ADI method to obtain a zero angle of attack
starting solution and applied Newton's method to obtain a converged solution, We
proceeded to increase the angle of attack using the previously converged Newion
solution for the starting solution at the new angle of attack (Fig. 10).

At an angle of attack of 9.13° an interesting event occured. As the angle of attack
was increased slightly, the solution changed dramatically and the lift coefficient was

significantly reduced. Further increases in angle of attack resulted in small changes
N + 2 £s M T 4 A A+l 1 £ e 1 A P PR EE

{lowering angle of attack) until 7.99°. Below this angle of attack, no solution could
be obtained; i.e., Newton’s method would not converge for a lower angle of attack
with the 7.99° converged solution as the initial guess. We thus obtained the Lift
curve shown in Fig. 10, ie., nonunique solutions for fixed angle of attack between
7.99° and 9.13°. In this range there is an upper branch (higher lift coefficient) and

1.2
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= e
S s ~
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Q
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i
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F1c. 10.  Lift coefficient versus angle of attack, 0.10 numerical smoothing coefficient, 0.08 Mach
number, 0.5 x 10° Reynoids number.
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Fig. 11. Stream function contours for nonunique solutions, 9.13° angle of attack, 0.10 numerical
smoothing coefficient, 0.08 Mach number, 0.5 x 10® Reynolds number: (a) high-lift solution; (b) low-lift
solution.

a lower branch (lower lift coefficient). For the upper branch of the lift curve, there
is a small separation bubble (recirculation region) just aft of the leading edge of the
airfoil (Fig. 11a). For the lower branch of the lift curve, the separation bubble is
much larger and extends nearly to the trailing edge of the airfoil as shown in
Fig. 11b.

Our experience at transonic Mach numbers should, of course, make us suspicious
of the temporal stability of the nonunique solutions (and indeed of any solution
obtained from Newton’s method or any other nontime-accurate method.) Once
again, we numerically calculated the eigenvalue (of the .o/ matrix) with maximum
real part for solutions near the hysteresis loop of Fig. 10. All the solutions were
stable. The connection between the two isolated branches of Fig. 10 will be
considered in Section 6.

Effect of Numerical Smoothing on Solutions

If, as in our calculations, centered difference approximations are used to
approximate hyperbolic terms, it is well known that the shortest wavelengths are
not dissipated and this can lead to nonlinear instabilities in practical calculations.
In order to overcome this problem, it is common practice to add numerical
smoothing terms to the finite difference approximation [7]. In the present calcula-
tions this was accomplished by adding a centered five-point dissipation term. In
time-accurate calculations the choice of the smoothing coefficient is generally quite
restricted by the numerical stability and accuracy; i.e., too little smoothing results
in high-frequency spatial oscillations which lead to nonlinear instability and too
much smoothing results in numerical inaccuracy. Although noncentered difference
approximations do not require the addition of numerical smoothing, they have
inherent numerical smoothing which is determined by the choice of the spatial
difference approximation and the grid spacing.

With Newton’s method the temporal numerical stability limits on explicit
smoothing coefficients are removed. Therefore, Newton’s method allows us to do a
more thorough investigation of the effect of numerical smoothing on the steady-
state solutions. For this study we choose the low subsonic Mach number, A = 0.08
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Fic. 12, Lift coefficient versus angle of attack., 0.20 numerical smoothing coefficient, 0.08 Mach
number, 0.5 x 10° Reynolds number.

and Re =0.5x10% In Figs. 10, 12, 13 we show the lift coefficient versus angle-c-
attack curves for three different values of the fourth-order numerical smocthing
coefficient. Although the three curves have qualitative similarities, the angie of
attack at which the abrupt change in solution, e.g., lift, occurs is not constant and
the hysteresis does not occur for the largest value of the smoothing parameter. The
resolution of the correc: solution to the Navier-Stokes equations requires a grid-
refinement study. The conclusion to be reached from the presented results is thas
Newton’s method can be used to compute flow fields with large separation bubblss
and hysteresis effects. In addition, it can be used for parametric studies which would
be difficult with time-accurate algorithms because of temporal instabilities,
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Fie. 13, Lift coefficient versus angle of attack, 0.40 numerical smoothing coefficient, 0.08 hiach
rumber, 0.5 x 10° Reynolds number.
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6. ARCLENGTH CONTINUATION ALGORITHM

Our inability to obtain an uninterrupted sequence of nearby solutions for small
discrete changes in parameter, e.g., a “continuous” lift versus angle-of-attack curve,
can in some cases be traced to a singular Jacobian matrix. For example, in the case
depicted by Fig. 10 if one monitors the sign of the determinant of the Jacobian
matrix as the angle of attack is increased (beginning at ¢« =0°), one finds that the
determinant remains positive until «~9.13° at which point the determinant
approaches zero and we are unable to continue. The problem is, of course, .not
unique to our calculations but occurs frequently in the solution of systems of non-
linear algebraic equations. The solution to the problem has been addressed quite
eloquently by Keller and others (see, e.g., [6]). For our code we adopted the
arclength continuation method of Keller.

The basic ingredient of the method is to remove the singularity of the Jacobian
matrix by adding a new equation (and a new variable) to the system of equations
(2.1) such that the determinant of the enlarged system is not zero. The new equa-
tion also introduces a new parameter, i.c., the arclengrh. We begin by rewriting (2.1)

F(q, a)=0 (6.1)

to emphasize the dependence on a which will now be treated as an unknown
variable.
Next we introduce a new equation

N(g, o, 5)=0 (6.2)

which relates the original unknown vector, q, to o and the new arclength parameter,
s. For our calculations we tried several choices for N including the most obvious,

N(g, &, 5)=llg — goll” + (2 — 09)* — (s — 50)* =0, (6.3)

where q, is a previously computed (and stored) solution corresponding to =,
and s, = s(y). Our implementation of this choice was not successful and we finally
selected Keller’s pseudo-arclength normalization

Maas)=| S | @-a0+| G o) | amz—G-s)=0 (69

which was found useful by Winters ez al. [11]. We compute the partial derivatives
with respect to s numerically from two previously computed and stored solutions;
i.e., we require two solutions to begin the arclength continuation method. Now we
solve the enlarged system, (6.1) plus (6.4), using Newton’s method, ie.,

oF |”
o

da [:Aq] ZI:—F]’ 65)
N 6_]\_/ Ao —N

dq Oa
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where &/ is given by (2.4). The Jacobian elements dF/dx are computed numericaliy
using a small perturbation of the current «. The enlarged system (6.5} has one
additional (dense) column and one additional (dense) row when compared to {2.2).
The new system can be solved efficiently [6] with the algorithm used for {2.2).
We require just one LU decomposition of .o/ and two back substitutions. Thus
the increased expense is only a few percent of the original algorithm cost. It is
interesting to note that this solution procedure seems to contradict our original
imtent to remove the singularity of .of. However, as the arclength algorithm
proceeds through the parameter value corresponding to a singular «f, it never
“lands™ precisely on the critical value. In our applications, which are summarized
in the following paragraphs, we experienced no problems with this algorithm as the
sclutions proceeded through the /imir or rurning point, ie., the point where the
determinant changes sign.

Low Subsonic Mach Number Application

We applied the arclength method to the low Mach number case shown in
Fig. 10. We started with two solutions computed with the original algorithm for
a=0" and 2 =2". Proceeding with the arclength algorithm we obtained the resul:
shown in Fig. 14, ie., a series of discrete points connecting the two branches shown
i Fig. 10. Instead of two solutions for certain fixed values of & we obtain three
solutions. We used the eigenvalue analysis to check the temporal stability of <he
new solutions (ie., the solutions between the two turning points) and found them
o be unstable {as one would expect from the nonlinear theory [67]). Although one
might not be interested in the temporally unstable solutions, the arclength
algorithm provides a systematic approach to trace all connected branches of the
solution if two solutions on one branch are known. In these calculations we did not
encounter any bifurcations except for the Hopf bifurcation discussed in the nex:
paragraph.
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Fic. 14, Lift coefficient versus angle of attack, 0.10 numerical smoothing coefficient, 0.08 Mach
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Fic. 15. Lift coefficient versus angle of attack, 0.85 Mach number, 0.5 x 107 Reynolds number.

Transonic Mach Number Application

The other instance where we were unable 1o proceed using the original algorithm
was the transonic case depicted in Fig. 7. There is a temporal instability (Hopf
bifurcation in the nonlinear theory terminology) at a = 1.55°; however, we were
able to proceed beyond this point to approximately o= 1.75° before the original
algorithm failed to converge. At this point we introduced the arclength algorithm
and obtained the solutions shown in Fig. 15. For all values of a the sign of the
determinant remains unchanged. The significance, if any, of the scalloped shape of
the curve is not known and deserves further investigation.

7. CONCLUDING REMARKS

We have demonstrated the feasibility of solving the finite-difference approxima-
tion for the two-dimensional steady-state thin-layer compressible Navier—-Stokes
equations using Newton’s method on the present generation of supercomputers.
Although the expense in memory and CPU time per iteration is high, the exact
Newton’s method is useful in both the evaluation of approximate methods and as
a tool to study the application of direct solvers, i.c., nontime-accurate approximate
Newton methods. In some special cases where present approximate methods exhibit
slow convergence (or fail to converge to machine accuracy), the exact Newton
method may prove to be an economical choice. In addition, with improved linear
system software for the LU decomposition and optimized coding of the Jacobian
evaluation, we believe our CPU times could be significantly reduced.

We have investigated the effect of freezing the Jacobian for a fixed number of
iterations and have shown the resulting saving in computer time required to obtain
a converged solution. These results offer encouragement that other approximate
Newton methods may also achieve convergence in less than 100 iterations.

Our results demonstrate the ability of Newton’s method in conjunction with a
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continuation method to obtain nonunique solutions if the difference equaticns have
multiple solutions. They also demonstrate the necessity of a capability to evaluate
the temporal stability of steady-state solutions obtained with direct solvers. For
example, if a steady-state solution is obtained by Newton’s method, it may be
temporally stable or unstable. The stability must be determined by some auxiliary
method, e.g., an eigenvalue analysis, a time-accurate method, or a continuation mert
had applied to an extended set of equations. On the other hand, if no steady state
exists, a direct solver will not converge and a time-accurate algorithm is required
to obtain a solution to the time-dependent equations.
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